

DS1220AB/AD 16k Nonvolatile SRAM

FEATURES

- 10 years minimum data retention in the absence of external power
- Data is automatically protected during power loss
- Directly replaces 2k x 8 volatile static RAM or EEPROM
- Unlimited write cycles
- Low-power CMOS
- JEDEC standard 24-pin DIP package
- Read and write access times as fast as 100 ns
- Lithium energy source is electrically disconnected to retain freshness until power is applied for the first time
- Full ±10% V_{CC} operating range (DS1220AD)
- Optional ±5% V_{CC} operating range (DS1220AB)
- Optional industrial temperature range of -40°C to +85°C, designated IND

PIN ASSIGNMENT

24	VCC
23	A8
22	A9
21	WE
20	OE
19	A10
18	CE
17	DQ7
16	DQ6
I	DQ5
14 I	DQ4
13	DQ3
	22 2 21 2 20 2 19 2 18 2 17 2 16 2 15 14 2

24-Pin ENCAPSULATED PACKAGE 720-mil EXTENDED

PIN DESCRIPTION

A0-A10	- Address Inputs
DQ0-DQ7	- Data In/Data Out
CE	- Chip Enable
WE	- Write Enable
ŌĒ	- Output Enable
V _{CC}	- Power (+5V)
GND	- Ground

DESCRIPTION

The DS1220AB and DS1220AD 16k Nonvolatile SRAMs are 16,384-bit, fully static, nonvolatile SRAMs organized as 2048 words by 8 bits. Each NV SRAM has a self-contained lithium energy source and control circuitry which constantly monitors V_{CC} for an out-of-tolerance condition. When such a condition occurs, the lithium energy source is automatically switched on and write protection is unconditionally enabled to prevent data corruption. The NV SRAMs can be used in place of existing 2k x 8 SRAMs directly conforming to the popular bytewide 24-pin DIP standard. The devices also match the pinout of the 2716 EPROM and the 2816 EEPROM, allowing direct substitution while enhancing performance. There is no limit on the number of write cycles that can be executed and no additional support circuitry is required for microprocessor interfacing.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground **Operating Temperature** Storage Temperature Soldering Temperature Caution: Do Not Reflow

-0.3V to +6.0V 0° C to 70° C; -40° C to $+85^{\circ}$ C for IND parts -40° C to $+70^{\circ}$ C; -40° C to $+85^{\circ}$ C for IND parts +260°C for 10 seconds (Wave or Hand Solder Only)

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS (T _A : See Note 1							
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES	
DS1220AB Power Supply Voltage	V _{CC}	4.75	5.0	5.25	V		
DS1220AD Power Supply Voltage	V _{CC}	4.50	5.0	5.50	V		
Logic 1	V _{IH}	2.2		V _{CC}	V		
Logic 0	V _{IL}	0.0		+0.8	V		

(T_A: See Note 10)

 $(T_{\wedge} = 25^{\circ}C)$

(V_{CC} =5V \pm 5% for DS1220AB)

DC ELECTRICAL CHARACTERISTICS

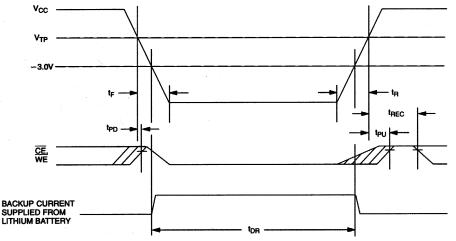
 $(V_{00} = 5)/(+ 10\%)$ for DS1220AD

DC ELECTRICAL CHARACTERIST	$(V_{CC} = 5V \pm 10\% 101 DS 1220AD)$					
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	I _{IL}	-1.0		+1.0	μΑ	
I/O Leakage Current	т	-1.0		+1.0	۸	
$\overline{CE} \ge V_{IH} \le V_{CC}$	I _{IO}			+1.0	μA	
Output Current @ 2.4V	I _{OH}	-1.0			mA	
Output Current @ 0.4V	I _{OL}	2.0			mA	
Standby Current $\overline{CE} = 2.2V$	I _{CCS1}		5.0	10.0	mA	
Standby Current $\overline{CE} = V_{CC} - 0.5V$	I _{CCS2}		3.0	5.0	mA	
Operating Current	I _{CC01}			75	mA	
(Commercial)	0001					
Operating Current	I _{CCO1}			85	mA	
(Industrial)	ICCOI			05	IIII X	
Write Protection Voltage	V	4.5	4.62	4.75	V	
(DS1220AB)	V _{TP}	4.3	4.02	4.73	v	
Write Protection Voltage	V _{TP}	4.25	4.37	4.5	V	
(DS1220AD)	• TP	4.23	4.37	4.3	v	

CAPACITANCE

					<u> </u>	<u> </u>
PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Input Capacitance	C _{IN}		5	10	pF	
Input/Output Capacitance	C _{I/O}		5	12	pF	

DS1220AB/AD


(T _A : See Note 1							
				(V _{CC} =5	5.0V ± 5	• • •	S1220AI
AC ELECTRICAL CHAR	ACTERIS	TICS		•			61220AE
			0AB-100		0AB-120		
PARAMETER	SYMBOL	DS1220	DAD-100	DS122	DAD-120	UNITS	NOTES
		MIN	MAX	MIN	MAX		
Read Cycle Time	t _{RC}	100		120		ns	
Access Time	t _{ACC}		100		120	ns	
$\overline{\text{OE}}$ to Output Valid	t _{OE}		50		60	ns	
$\overline{\text{CE}}$ to Output Valid	t _{CO}		100		120	ns	
\overline{OE} or \overline{CE} to Output Active	t _{COE}	5		5		ns	5
Output High Z from	t		35		35	ns	5
Deselection	t _{OD}				55	115	5
Output Hold from Address Change	t _{OH}	5		5		ns	
Write Cycle Time	t _{WC}	100		120		ns	
Write Pulse Width	t _{WP}	75		90		ns	3
Address Setup Time	t _{AW}	0		0		ns	
Write Recovery Time	t _{WR1}	0		0		ns	12
	t _{WR2}	10		10		ns	13
Output High from \overline{WE}	t _{ODW}		35		35	ns	5
Output Active from \overline{WE}	t _{OEW}	5		5		ns	4
Data Setup Time	t _{DS}	40		50		ns	4
Data Hold Time	t _{DH1}	0		0		ns	12
	t _{DH2}	10		10		ns	13

DS1220AB/AD

AC ELECTRICAL CHARACTERISTICS

AC ELECTRICAL CHARACTERISTICS								
PARAMETER	SYMBOL	DS1220AB-150 DS1220AB-200 (MBOL DS1220AD-150 DS1220AD-200			UNITS	NOTES		
		MIN	MAX	MIN	MAX			
Read Cycle Time	t _{RC}	150		200		ns		
Access Time	t _{ACC}		150		200	ns		
\overline{OE} to Output Valid	t _{OE}		70		100	ns		
$\overline{\text{CE}}$ to Output Valid	t _{CO}		150		200	ns		
\overline{OE} or \overline{CE} to Output Active	t _{COE}	5		5		ns	5	
Output High Z from Deselection	t _{OD}		35		35	ns	5	
Output Hold from Address Change	t _{OH}	5		5		ns		
Write Cycle Time	t _{WC}	150		200		ns		
Write Pulse Width	t _{WP}	100		150		ns	3	
Address Setup Time	t _{AW}	0		0		ns		
Write Recovery Time	t _{WR1}	0		0		ns	12	
	t _{WR2}	10		10		ns	13	
Output High Z from \overline{WE}	t _{ODW}		35		35	ns	5	
Output Active from \overline{WE}	t _{OEW}	5		5		ns	4	
Data Setup Time	t _{DS}	60		50		ns	4	
Data Hold Time	t _{DH1}	0		0		ns	12	
	t _{DH2}	10		10		ns	13	

POWER-DOWN/POWER-UP CONDITION

SEE NOTE 11

POWER-DOWN/POWER-UP TIMING

(T_A: See Note 10)

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
V_{CC} Fail Detect to \overline{CE} and \overline{WE} Inactive	t _{PD}			1.5	μs	11
V_{CC} slew from V_{TP} to $0V$	t _F	300			μs	
V_{CC} slew from 0V to V_{TP}	t _R	300			μs	
V_{CC} Valid to \overline{CE} and \overline{WE} Inactive	t _{PU}			2	ms	
V _{CC} Valid to End of Write Protection	t _{REC}			125	ms	

(T	0E0	\sim	
	=23	C)	

PARAMETER	SYMBOL	MIN	ТҮР	MAX	UNITS	NOTES
Expected Data Retention Time	t _{DR}	10			years	9

WARNING:

Under no circumstances are negative undershoots, of any amplitude, allowed when device is in the battery backup mode.

NOTES:

- 1. WE is high for a read cycle.
- 2. $\overline{OE} = V_{IH}$ or V_{IL} . If $\overline{OE} = V_{IH}$ during write cycle, the output buffers remain in a high-impedance state.
- 3. t_{WP} is specified as the logical AND of \overline{CE} and \overline{WE} . t_{WP} is measured from the latter of \overline{CE} or \overline{CE} going low to the earlier of \overline{CE} or \overline{WE} going high.
- 4. t_{DS} is measured from the earlier of \overline{CE} or \overline{WE} going high.
- 5. These parameters are sampled with a 5 pF load and are not 100% tested.
- 6. If the CE low transition occurs simultaneously with or later than the WE low transition, the output buffers remain in a high-impedance state during this period.
- 7. If the \overline{CE} high transition occurs prior to or simultaneously with the \overline{WE} high transition, the output buffers remain in a high-impedance state during this period.

- 8. If \overline{WE} is low or the \overline{WE} low transition occurs prior to or simultaneously with the \overline{CE} low transition, the output buffers remain in a high-impedance state during this period.
- 9. Each DS1220AB and each DS1220AD has a built-in switch that disconnects the lithium source until V_{CC} is first applied by the user. The expected t_{DR} is defined as accumulative time in the absence of V_{CC} starting from the time power is first applied by the user. This parameter is guaranteed by design and is not 100% tested.
- 10. All AC and DC electrical characteristics are valid over the full operating temperature range. For commercial products, this range is 0°C to 70°C. For industrial products (IND), this range is -40°C to +85°C.
- 11. In a power down condition the voltage on any pin may not exceed the voltage on V_{CC} .
- 12. t_{WR1} , t_{DH1} are measured from WE going high.
- 13. t_{WR2} , t_{DH2} are measured from CE going high.
- 14. DS1220 modules are recognized by Underwriters Laboratory (U.L.®) under file E99151.

DC TEST CONDITIONS

Outputs Open Cycle = 200ns for Operating Current All Voltages Are Referenced to Ground

AC TEST CONDITIONS

Output Load: 100 pF + 1TTL Gate Input Pulse Levels: 0 - 3.0V Timing Measurement Reference Levels Input: 1.5V Output: 1.5V Input Pulse Rise and Fall Times: 5ns

PART NUMBER	TEMPERATURE RANGE	SUPPLY TOLERANCE	PIN/PACKAGE	SPEED GRADE
DS1220AB-100	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	100ns
DS1220AB-100+	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	100ns
DS1220AB-100IND	-40°C to +85°C	$5V \pm 5\%$	24 / 720 EMOD	100ns
DS1220AB-100IND+	-40°C to +85°C	$5V \pm 5\%$	24 / 720 EMOD	100ns
DS1220AB-120	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	120ns
DS1220AB-120+	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	120ns
DS1220AB-150	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	150ns
DS1220AB-150+	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	150ns
DS1220AB-200	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	200ns
DS1220AB-200+	0° C to $+70^{\circ}$ C	$5V \pm 5\%$	24 / 720 EMOD	200ns
DS1220AB-200IND	-40°C to +85°C	$5V \pm 5\%$	24 / 720 EMOD	200ns
DS1220AB-200IND+	-40°C to +85°C	$5V \pm 5\%$	24 / 720 EMOD	200ns
DS1220AD-100	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	100ns
DS1220AD-100+	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	100ns
DS1220AD-100IND	-40°C to +85°C	$5V \pm 10\%$	24 / 720 EMOD	100ns
DS1220AD-100IND+	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	100ns
DS1220AD-120	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	120ns
DS1220AD-120+	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	120ns
DS1220AD-150	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	150ns
DS1220AD-150+	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	150ns
DS1220AD-200	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	200ns
DS1220AD-200+	0° C to $+70^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	200ns
DS1220AD-200IND	-40°C to +85°C	$5V \pm 10\%$	24 / 720 EMOD	200ns
DS1220AD-200IND+	-40° C to $+85^{\circ}$ C	$5V \pm 10\%$	24 / 720 EMOD	200ns

ORDERING INFORMATION

+ Denotes lead-free/RoHS-compliant product.